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A numerical procedure is developed for the solution of partial differential equations 
for the convection of scalar variables. An important feature of this approach is that the 
space derivatives are computed with very high accuracy by means of Fourier transform 
methods. By this method a forward marching problem involves discrete time steps but 
space derivatives are accurate within the limit to which a distribution can be defined 
on a finite set of meshpoints. Expressions are derived for the amplitude error and phase 
error, which are verified by computer experiments for the two-dimensional case. This 
numerical method is applied to the solution of Burgers’ equation. The accuracy of the 
numerical solutions indicates that the method is well suited for the solution of non- 
linear partial differential equations with other than periodic boundary conditions. 

1. INTRODUCTION 

Numerical methods for obtaining solutions to initial value problems in “fluid 
mechanics” and “plasma physics” fall roughly into two categories: (1) transform 
methods, in which the variables are expressed in terms of orthogonal polynomials; 
and (2) finite difference methods. The former approach is usually very accurate 
for problems with simple boundaries [I, 21. The latter, however, is more versatile 
and more easily applicable to wide classes of realistic problems [3-51. Unfortun- 
ately, finite difference methods for partial differential equations seldom achieve 
more than a rather modest accuracy in practice [5, p. 24; 61. Since the appearance 
of the work of Roberts and Weiss [7], it has become well understood that the 
shortcomings of finite difference methods are related to the dispersion and the 
dissipation present in the numerical approximations. Significant improvement 
in reduced phase errors with higher order schemes was recognized in their paper 
[7] although such errors had been discussed previously [S, 91. Experimental 
behavior in simple flow situations together with stability analyses were studied by 
Crowley [lo, 111. 

The two main sources of error in the solution of initial value problems by finite 
100 

Copyright 0 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
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difference methods are due to the following: (1) the time derivatives are approxi- 
mated by truncated Taylor series; and (2) the space derivatives are replaced by some 
finite difference expression. Space differencing errors can be minimized or even 
eliminated by the accurate computation of the space derivative terms. A numerical 
method based on this principle can be expected to possess similar accuracy as the 
corresponding transform method if similar time differencing methods are employed. 
Indeed, it was found by Orszag [12] that the pseudospectral (collocation) approxi- 
mation [13] and the spectral (Galerkin) approximation [l] give similar errors. In 
the pseudospectral approximation the space derivatives are computed by Fourier 
methods [I33 and “leapfrog” (or midpoint rule) time differencing is used to march 
forward in time. 

In this paper we shall study higher order numerical methods in which the space 
derivative terms are computed with high accuracy. In our approach to time 
differencing we start from a Taylor series in t, following in principle Lax and 
Wendroff [5, p. 3021. The time derivatives are then substituted by expressions 
containing only space derivative terms. The numerical evaluation of the space 
derivative terms is based on the use of finite Fourier series. In this respect our 
method is similar to the pseudospectral approximation [12, 131. 

Let S(x, t) be some distribution with periodic boundary conditions of period 2~r 
in all space variables x = (x1 ,..., xi ,..., x,). We shall assume that the principal 
domain is partitioned by a uniform mesh of size M1 x M, *.* x M, such that the 
location of the meshpoints is given by 

X, = mj Ax, ; mj = 0, 1, 2 ,..., Mi - 1 (1) 

where 

Axj = 23r/Mj (2) 

for anyj = 1, 2,..., n. By denoting the collection of all meshpoints as defined above 
by R, the finite Fourier transform 2 of 5 can be written as [14] 

-WC, t) = M M la.. M c 5(x, t) exp(--ik - 4 
12 n xeR 

where i = (- 1)lj2 and k is the wave vector 

k = (k, ,..., kj ,..., k,,) 

whose components assume integer values within the limits 

(3) 

(4) 

(9 -& < ki 6 Kj ; Kj = Mj/2 
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where Kj is the wave number of the shortest wave component in the xi direction 
(often referred to as the “2dx” wave). 

From Z(k, t) the partial derivatives of 5(x, t) with respect to xi are computed as 

X(x, 0 ~ = 
ax, 

c ik,Z(k, t) exp(ik * x) 
lki I+ 

and 

x(x, t) 
-xq-= 2 - l$Z(k, t) exp(ik - x). 

kj--Kj-l 

6) 

The numerical computation of these expressions can be carried out efficiently 
by the use of the “fast Fourier Transform” (FFT) algorithm 1141. This method of 
computing the space derivatives gives results that are substantially more accurate 
than those obtained from finite difference expressions. Owing to this property, 
numerical methods studied in this paper will be referred to as “accurate space 
derivative” (ASD) methods. 

In Section 2 we shall describe the application of the ASD method to the con- 
vective equation. In Section 3 we present a thorough analysis of the amplitude and 
phase errors for various orders of approximation. These results are valid for the 
general n-dimensional case. In Section 4 we study the accuracy of the ASD method 
by means of numerical experiments involving the uniform rotation of a Gaussian 
distribution. In Section 5 we apply the ASD method to the numerical solution of 
Burgers’ equation, in order to illustrate its accuracy and power in problems 
involving nonlinear partial differential equations with nonperiodic boundary 
conditions. The computed Burgers’ shock waves are in very good agreement with 
the exact profiles for a wide range of values of the dissipative parameter. 

2. ASD MOOD FOR THE CONVECTIVE EQUATION 

In this Section, we develop numerical methods for the n-dimensional convective 
equation 

(agat) + v . vg = 0 (8) 

where 5 = [(x ,t), and v = v(x, t), and furthermore, v = (vl , u2 ,..., u,), x = 
(x1 , xg ,..., x,J and V is the n-dimensional de1 operator. For simplicity v is assumed 
to be known, although, in general, it is computed at each time step, e.g., by solving 
the Poisson equation [9,6]. 

Suppose that an approximate solution is sought to the initial value problem 
represented by Eq. (8). The variable 5 is approximated at time (m + 1) dt on the 
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basis of the known values of 5 and v at time m At. This can be done conveniently 
by expressing [([x, (m + 1) At] in a truncated Taylor series 

(9) 

where 5” stands for 5(x, m At). The time derivatives of 5 are expressed in terms of 
the space derivatives of 4 and v by making use of Eq. (8). By successive differen- 
tiation, starting with Eq. (8), we obtain 

at 
at= -v * vg, 

825 p= -$.V(-v.v($) 

al+15 
- = - {$ (]-':y j! $ * atl+l v (3). 

(10) 

(10 

(12) 

For convenience, the superscript m has been omitted in the above equations. All 
the known variables v and 5 are given at t = m At, hence there is no ambiguity 
if m is dropped. 

It is seen from Eqs. (10-12) that any time derivative of 5 can be obtained from 
lower order time derivatives of v and 5. The substitution of the left-hand side of 
Eqs. (10-12) in Eq. (9) completes the computation process. The space derivatives 
in Eqs. (10-12) are computed by the Fourier method as shown in Eqs. (3-6). 

3. ANALYSIS OF STABILITY AND ACCURACY 

The prime requirement of a numerical scheme is that it be stable. In the linear 
stability analysis [6] of convective schemes we study solutions of Eq. (8) for a 
uniform, constant velocity field, i.e., v = constant. We shall call the convective 
scheme stable if all its Fourier components remain bounded and unstable if at 
least one component is unbounded. The trivial solution of Eq. (8) is 

5(x, t) = exp[ik * (x - vt)] (13) 

so that the initial configuration 

((x, t) = exp[ik . x] (14) 
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is merely translated by the amount vt in time t, and the solution after a time interval 
dt has a phase angle 

4 = -k .vflt. (15) 

There is no amplitude damping or growth. 
Let us consider now the convection of initial configurations given in Eq. (14) 

by the ASD scheme. Substituting Eqs. (14) and (15) into Eqs. (lO-12), and by 
making use of Eq. (9), assuming that m = 0, we obtain 

5’ = [I + i+ - $P/2! + ..a + (ic$)“/p!] 5”. (16) 

We shall denote the multiplier of co in Eq. (16) by h, , i.e., 

uv9 = 2 y 3 (17) 

which we shall refer to as the amplification factor [7]. The subscript p signifies the 
highest order term in Eqs. (9) and (16). We define the amplitude error in the ASD 
scheme of order p as 

44) = I &(+)I - 1. (18) 

The amplitude errors computed numerically from Eqs. (17) and (18) are shown in 
Fig. 1. The nine curves correspond to different values of p, as indicated. The con- 

True Phase in Degrees 

FIG. 1. Amplitude errors cP as defined by Eq. (18). The true phase is 4 as per Eq. (15) and p 
indicates the order of the approximation. 
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dition for stability for all I$ values within some range, say 

is that j X, 1 < 1, or equivalently that eP , < 0. This stability condition is satisfied 
by the ASD schemes whose order is 3,4, 7, and 8. 

In addition to amplitude errors, numerical convective schemes introduce errors 
in phase causing numerical dispersion. In our analysis of the phase errors we com- 
pare the correct phase 4, Eq. (15), with the actual phase angle resulting from the 
numerical convective methods, which for the ASD scheme of order p can be 
expressed as 

A = cos-l[WhJ/l A, II (19) 

in which Re()c,) is the real part of the amplification factor. In order to express the 
magnitude of the error relative to the correct phase angle, we define the relative 
phase error 6, , for the ASD scheme of order p, as 

6, = (4, - 4)/d. (20) 

By making use of Eqs. (17) and (20) 6, can be determined for any given p and I$. 
The computed results for 6, are shown in Fig. 2. 

. Arakawa 4th 
P Crowley 2nd 
0 Fromm4th 

0.00 40.00 80.00 120.00 160.00 
True Phase in Degrees 

FIG. 2. Comparison of phase errors 6,. The solid curves (p = 3,4,7, and 8) were computed 
from Eq. (20). The superimposed symbols (circle and square) designate computer experimental 
results. The three sets of results shown in the lower left comer correspond to those of Arakawa 
(fourth order [l]), Crowley (second order [IO]), and Fromm (fourth order [61). The five symbols 
in the upper left represent the results of the Galerkin approximation [l]. 
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4. NUMERICAL EXPERIMENTS: PASSIVE CONVECTION 

In order to verify the expressions for the amplitude error (18) and phase error (20) 
and to test the method we programmed the ASD scheme for the two-dimensional 
case (n = 2). In the first set of numerical experiments the velocity field was chosen 
as 

v = (01 ,021 = (1, 1) cw 

whose effect is a translation of the initial distribution along the diagonal of the 
mesh. The initial distribution 5(x, 0) was a delta function to ensure that all Fourier 
components are present. At one time step dt later we evaluated the actual amplitude 
errors and phase errors from the Fourier coefficients of 5(x, dt). We found that the 
resulting truncation errors agreed remarkably well with those obtained from 
Eqs. (17) and (20). The phase errors obtained from the numerical experiments are 
indicated by symbols in Fig. 2. 

The second set of computer experiments to test the accuracy of the method was 
a two-dimensional convection of a passive scalar by a uniform rotation about the 
center of the mesh with an angular velocity Q. This problem is regarded as an 
effective test of the accuracy of numerical convective methods [l, 11, 15, 161. The 
initial distribution was specified over a 32 x 32 mesh as a Gaussian 

5(x, 0) = exp I- i [( Xl i “” )” + (+)“I 1 (22) 

where x0 = 8 dx, , a = 1.41 dx, and b = 2 dx, , expressed in multiples of the 
mesh spacings. The perspective view of the Gaussian distribution is shown in Fig. 3. 

The distribution was subjected to a complete revolution (277) clockwise, followed 
by one (27r) counterclockwise rotation by reversing the velocity field. The time steps 
(dt) were chosen so that a 27~ rotation requires exactly 400 time steps. Thus, the 
Gaussian was expected to be centered over a meshpoint, within some numerical 

FIG. 3. Perspective view of the Gaussian distribution in Experiment 1 of Table I. (a) At 
*/2,:(b) At v turn from its initial position. The mesh size is 32 x 32. 
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errors, after 7712, n, 3~12, and 2n rotations. We were particularly interested in the 
maximum and minimum values at the mesh point after multiples of quarter 
revolutions. These results are shown in Table I. 

TABLE I 
Uniform Rotations of the Gaussian Distribution 

Order Rotations 4 max 
of in 2?r Maximum Minimum 

Exper- scheme Counter degrees - at a at a 
iment P Clockwise Clockwise (approx.) Q& meshpoint meshpoint 

0 0 l.oooO 0.0000 
742 0 0.9996 0.0000 

0 0.9991 0.0000 
1 3 3~;; 0 80 400 0.9987 0.0000 

2a 0 0.9982 0.0000 
2rr 7r 0.9973 0.0000 
2r 2rr 0.9964 0.0000 

0 0 1.oooo 0.0000 
42 0 0.9997 0.0000 

0 0.999s 0.0000 
2 4 3:,2 0 80 400 0.9992 0.0000 

2?? 0 0.9989 0.0000 
2?r 77 0.9984 0.0000 
2n 27 0.9979 0.0000 

5. NUMERICAL METHODS FOR BURGERS' EQUATION 

Burger’s equation reads 

(au/at) + u(au/ax) = Y(a%d/ax2) (23) 

where v is the coefficient of diffusivity [17], also known as the dissipative para- 
meter [18]. Equation (23) approximates the motion of a plane wave of small but 
finite amplitude. For the initial wave form 

u(x, 0) = 2 ’ I 
x<o 

, x>o 
Equation (23) has a steady solution of the form [ 181 

u = (l/2) u,[l - tanh(u,l;/4v)] 

where 5 = x - At, h = const = uJ2. 

(25) 
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We studied two different numerical methods based on the ASD principle for 
solving Burgers’ equation. In the first method the solution is advanced by com- 
puting the contributions from the nonlinear convective term and the dissipative 
term separately in each time step. In the second method, which is considerably more 
accurate than the first, we advance the solution by accounting for both the con- 
vective and diffusive terms simultaneously. 

In order to satisfy the conditions expressed in Eq. (24) the principle domain 

D = {x;O < x < L} (26) 

is partitioned into two subdomains 

D = D, +Dl 

as shown in Fig. 4. Here D, is the time computational domain over which new u 
values are computed. The values of u over D, are fixed and are being kept constant 
throughout the entire computation. The unique purpose of D,, is to provide a 
smooth transition between the two end points of D, and to assure periodicity 
over D. This configuration permits the computation of the space derivatives of u 
by the Fourier method outlined earlier. In the numerical examples considered 
here the length of D, was set equal to 0.6 over which u(x, t) was given by 

u(x, t) = 
I 

0; 0 < x < 0.1 
0.5[1 - cos((x - 0.1) n/0.3)]; 0.1 < x < 0.4 

I 
(27) 

1; 0.4 < x < 0.6 

1.0,. 

0.6,. 

u 
0.6.. 

.O 

0.4,. 

0.0. I \ .\ \ \ \ \ \ .\ \ I\ I 
0.0 0.2 0.4 06 a6 1.0 1.2 1.4 1.6 1.6 2.0 2.2 2.4 2.66 

x 

FIG. 4. Evolution of the numerical solution (method B) of Burgers’ equation from an initial 
condition in the form of a step function, Y = 0.005. The time separation between any two 
successive plots is 0.2 time units; the numbers on the curves are values of time. 
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as shown in Fig. 4. In what follows we describe these two numerical approaches to 
the solution of Burgers’ equation. 

Method A 

The essence of this solution method is to alternate between the following two 
steps: (1) compute an intermediate solution 

s(t + At) = u(t) + a%(t) At2 a$At+ at a%(t) At3 
22+-@-3! 

where 

a24 &A 
-= 
at -ax, 

a224 a24 a24 a au -r 
at2 -----u- -9 at ax ( 1 ax at 
as 
.@= ~&2$&($)-u&(2$), -- (31) 

by using only the convective term; (2) advance the solution using only the diffusion 
term by means of the finite Fourier transform method [I91 

u(t + At) = F-l[exp( --V/c2 At) F(Q)] (32) 

where the Fourier transform operation and its inverse are denoted by F and F-l 
respectively, and k is the wave number. 

Method B 

In this solution method we compute u(t + At) from u(t) by the following 
expression: 

u(t + At) = u(t) + a%(t) At2 a$At+ at a%(t) At3 
Ti+~Tjj-’ (33) 

The time derivatives in Eq. (33) are computed from Eq. (23) by successive differen- 
tiation as follows: 

au au a2u 
at= -UaxS"s, 

a2u a24 a24 a au a2 au -=---- 
at2 at ax Uaxat+“axzat’ ( ) ( 1 (35) 

a324 
p= $~-2~;($)-u$-(~)+v$($). (36) -- 
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The x derivative terms in Eqs. (29-31) and (34-36) are computed by Fourier 
methods over the principal domain D, however, the solutions, Eqs. (28), (32), and 
(33), are advanced only over D, (Fig. 4). 

All numerical computations of Burgers’ equation were performed with 
dt = 0.001 and dx = 0.01 using 256 meshpoints to represent D. From the initial 
condition (24) the travelling wave profile (Fig. 4) evolves into what approximates 
the exact analytic result (25). Computed values of these profiles at the meshpoints, 
together with the exact values (25) are given in Tables II and III, at t = 0.85, for 
methods A and B, respectively. 

These tables indicate similar accuracy for both methods in the v = 0.002 case. 
For greater v values, however, method B is clearly superior. The remarkable 
accuracy of method B is demonstrated by the v = 0.01 case in which the error is 
of the order of 0.01 y0 of the maximum value ul, and the velocity of the wave 
profile is 0.4999, i.e., slightly lower than the theoretical velocity of propagation 
which is 0.5. 

In comparing these solution methods the greater accuracy of B is attributed to 
its small truncation errors O(dt4). In method A the contributions due to the con- 
vective and diffusive terms are computed independently with similar (or better) 
accuracy than in B. The simple addition of the contributions from the two com- 
peting terms, however, results in truncation errors O(dP), i.e., method A is only 

TABLE II 

Comparison of Analytic with Numerical Results from Method A for the wave in Burgers’ Equation 
(The wave profile amplitude u(x) is given as a function of distance.) 

d-4 

Y = 0.002 Y = 0.005 Y = 0.01 

x Exact Computed Exact Computed Exact Computed 

1.37 
1.38 
1.39 
1.40 
1.41 
1.42 
1.43 
1.44 
1.45 
1.46 
1.47 
1.48 
1.49 

1.000 0.992 0.997 0.996 0.952 0.950 
1.ooo 1.003 0.993 0.991 0.923 0.920 
1.000 0.990 0.981 0.979 0.879 0.876 
0.999 1.005 0.951 0.948 0.815 0.812 
0.991 0.978 0.876 0.872 0.727 0.725 
0.901 0.910 0.723 0.719 0.618 0.616 
0.429 0.429 0.489 0.489 0.495 0.495 
0.058 0.066 0.261 0.264 0.373 0.374 
0.005 0.007 0.115 0.118 0.265 0.267 
0.000 0.001 0.046 0.048 0.179 0.181 
0.000 0.001 0.017 0.018 0.117 0.119 
0.000 0.000 0.006 0.007 0.074 0.076 
0.000 0.000 0.002 0.003 0.047 0.048 
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TABLE III 

Comparison of Analytic with Numerical Results from Method B for the Wave in Burgers’ Eq. 
(The wave profile amplitude u(x) is given as a function of distance.) 

44 

Y = 0.002 Y = 0.005 v = 0.01 

x Exact Computed Exact Computed Exact Computed 

1.37 1.000 0.993 0.9975 0.9972 0.9524 0.9524 
1.38 1.000 1.005 0.9932 0.9930 0.9239 0.9239 
1.39 1.000 0.991 0.9818 0.9814 0.8805 0.8805 
1.40 0.999 1.007 0.9520 0.9517 0.8171 0.8172 
1.41 0.991 0.979 0.8795 0.8792 0.7305 0.7305 
1.42 0.901 0.919 0.7286 0.7285 0.6218 0.6218 
1.43 0.428 0.428 0.4969 0.4969 0.4993 0.4993 
1.44 0.058 0.062 0.2666 0.2667 0.3769 0.3768 
1.45 0.005 0.005 0.1179 0.1180 0.2684 0.2683 
1.46 0.000 0.000 0.0469 0.0469 0.1820 0.1819 
1.47 0.000 0.000 0.0178 0.0178 0.1189 0.1189 
1.48 0.000 0.000 0.0066 0.0066 0.0757 0.0756 
1.49 0.000 0.000 0.0024 0.0024 0.0473 0.0472 

a first order method. According to our analysis the considerably smaller accuracy 
for the Y = 0.002 example in both methods A and B is not the consequence of 
the inaccuracy of the numerical schemes but is the result of the truncation of the 
spectrum in k space. More accurate representation of such steep profile requires 
higher wave numbers than those that can be supported by the computational 
mesh used. 

6. CONCLUDING REMARKS 

Numerical ASD methods own their accuracy to the almost exact computation 
of the space derivative terms. These operations, Eqs. (l-7), require more computer 
time than the approximation of the derivatives by simple finite difference expres- 
sions in almost all l-dimensional problems. The two-dimensional scalar convection 
simulations using the third-order scheme (Experiment 1 in Table I) required 
about 0.09 set per time step. These calculations were performed on an IBM 
System/360 Model 195 computer. We have no accurate timing information 
available for finite difference methods. As an order-of-magnitude comparison, the 
computer time requirements of the fourth-order ASD method were estimated [20] 
to be about two times that of the fourth-order finite difference scheme of Fromm [3]. 

58111311-8 
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In the case of three-dimensional problems, however, the ASD schemes (p = 3 or 4) 
are expected to be faster than Fromm’s fourth-order finite difference method. All 
programs were written in the FORTRAN language. The speed of computations for 
the ASD scheme could be improved by at least a factor of two if an assembler- 
language-written fast Fourier transform routine is used. 

We have derived the expressions for the phase error and amplitude error for the 
ASD convective schemes. These results were verified by computer experiments. 
There is a remarkably good agreement between the theoretical and the numerical 
results. Both phase and amplitude error can be expressed in terms of a single 
variable c$. This variable is the theoretical change in phase angle (in one time step) 
of the Fourier component of the scalar variable convected by a uniform velocity 
field. This “true phase” C$ is defined by Eq. (15) for the general n-dimensional case. 
Therefore, our results regarding amplitude and phase error are independent of 
dimensionality. 

As a nonlinear example to test the feasibility and accuracy of the ASD methods 
we studied the numerical solutions of Burgers’ equation (23). We have demonstrated 
that the ASD convective scheme is well suited to the numerical solution of non- 
linear problems. The results of Table III demonstrate that the ASD method (B) 
can be applied to partial differential equations which are more general than the 
convective equation. On the basis of the experience gained from solving Burgers’ 
equation with conditions specified by Eq. (24), we can conclude that the ASD 
methods are applicable to problems with other than periodic boundary conditions. 
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